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Abstract

Today’s machine translation systems are
one-size-fits-all regarding the text com-
plexity of output. In this paper, we develop
two methods for controlling the readabil-
ity level of translations. In our first ap-
proach, source-side sentences in the train-
ing corpus are tagged based on the read-
ability of the matching target sentences be-
fore being used in training. Our second
approach alters the traditional encoder-
decoder architecture by specifying a joint
encoder and separate decoders for simple
and complex decoding modes, with train-
ing data split by readability. We demon-
strate effective control over output read-
ability score on three Spanish-English test
sets with little BLEU score degradation.
One of our best-performing models trans-
lates newstest2013 to a Dale-Chall read-
ability score of 5.93 in simple mode, and
9.36 in complex mode.

1 Introduction

Machine translation is concerned with generating
a semantically accurate translation from another
language. Apart from generating grammatically
and semantically correct translations, though,
there are other factors which affect whether a
reader is able to understand a translation. One im-
portant and easily neglected factor of how well a
machine translation system performs is the com-
plexity of the text relative to the skill of the reader.
For instance, in defining “machine translation” to
a 7-year-old, one might say, “machine transla-
tion is a way to take a sentence from one lan-
guage and turn it into a sentence in another lan-
guage”, whereas when conversing with an adult,
one might explain, “machine translation is the au-
tomated process by which a sentence in a source

language can converted into a sentence in a foreign
language”. Both sentences carry the same seman-
tic meaning and do not require specialist technical
knowledge, but some of the phrases in the second
translation may be too advanced for a child, such
as “automated”, “process by which”, and “con-
verted”.

In this paper, we develop two machine transla-
tion methodologies that can control the complex-
ity and reading level of the output, because the
reading skill of the user of the system can vary. For
skilled readers, we aim to use complex words. For
less-skilled readers, such as the average 7-year-old
child, we aim to make the translation use difficult
words rarely while keeping the core idea of the
source sentence. Accordingly, we built a system
where a user can specify the complexity/reading
level of the translation they wish to be output.

2 Background: Readability Tests

To quantitatively evaluate the complexity of En-
glish sentences, we used the three commonly-used
automated readability tests.

2.1 Dale-Chall Readability

The Dale-Chall Readability is a traditional read-
ability score that relies on a list of common En-
glish words to assess readability (Chall & Dale,
1995). The score contains two variables: percent
of number of words per sentence and percent of
unfamiliar words, and the equation is given as:
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2.2 Flesch-Kincaid Grade Level

Flesch-Kincaid Grade Level is one of the most
widely used readability metric, which estimates
the readability of text using cognitively moti-
vated features (Kincaid, Fishburne Jr, Rogers, &



Chissom, 1975). Flesch-Kincaid Grade Level ap-
proximately corresponds to the US grade level.
The score contains two variables: percent of num-
ber of words per sentence and percent of syllables
per word, and the equation is given as:
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We also evaluate the translated text against the less
commonly used Flesch Reading Ease, which is
computed as (Flesch, 1948):
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3 Factors Affecting the Complexity of
the Output Translation

The complexity of the output translation Z of cur-
rent MT systems is affected by the overall com-
plexity of the target sentences in the training cor-
pusY.

To show this effect, we trained the OpenNMT
default RNN model on four different training cor-
pora and tested readability on each model’s trans-
lation of WMT newstest2013. Examining Tables
1 and 2, we observe a relationship between the av-
erage Dale-Chall readability score of the training
corpus and the readability of the output transla-
tion.

Corpus Dale-Chall Score
OpenSubtitles 3.429
OS+Europarl 6.079
Paracrawl 7.924
Europarl 8.800

Table 1: Dale-Chall Readability of Training sets.

Test DC | FKG | FRE | BLEU
gold 8.11 | 9.49 | 59.83 -
OpenSubtitles | 7.09 | 8.25 | 67.52 | 18.33
OS+Europarl | 7.61 | 9.15 | 63.40 | 24.79
Europarl 775 9.48 | 61.84 | 22.97
Paracrawl 792 | 936 | 61.11 | 27.38

Table 2: Effect of corpus on translation readability
for newstest2013.

In this project, we develop two training methods
which allow end-users some control over the the
readability level of their output.

4 Proposed Architectural Approaches

4.1 Double-Decoder

The first approach is an encoder-decoder model
with a shared encoder and two decoders — one for
“complex” decoding, and another for “simple” de-
coding as seen in Figure 1. When training a com-
plex sentence, the joint encoder is paired with the
“complex” decoder and loss is calculated based on
that encoder-decoder pair. For a simple sentence,
the encoder is paired with the “simple” decoder.
In this way, the encoder learns shared representa-
tions for all source sentences, while separate de-
coders tune themselves to sentences that conform
to the desired complexity level. At inference time,
we pass a flag indicating whether we want the out-
put to be simple or complex. The corresponding
decoder then translates the test set.
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Figure 1: Encoder-decoder model with separate
decoders for simple vs. complex output settings.

4.2 Tagged Data

Our second approach utilizes a short unique text
string added to the end of each training sentence
corresponding to that sentence’s complexity. In-
spired by (Sennrich, Haddow, & Birch, 2016), the
intuition behind this simple method is that the at-
tention mechanism learns to pay attention to the
tag when decoding into the simple or complex
setting. The approach requires no customization
of model architecture or training procedure. At
test time, source-side test sentences are augmented
with the complex or simple string used during
training to indicate the desired complexity of the



output. We chose unique text tags that were un-
likely to appear elsewhere in the English corpus to
avoid overloading the symbol with multiple mean-
ings. A third unique tag was added to sentences
that did not meet the chosen thresholds to be con-
sidered simple or complex, so the model might
learn from these examples without detracting from
the goal of keeping the mean readability score
given a simple tag, versus given a complex tag,
far apart.

4.3 Data Selection

We develop a novel method for data selection to
generate our simple and complex training sets.
We first score the readability of each target-side
sentence in the corpus. Next, we select which
sentences to include in the training sets based
on their percentile rank for readability. For in-
stance, for the double decoder architecture, we
might choose to include the bottom 30% of avail-
able training sentences as the simple set, the top
30% as the complex set, and discard the remaining
sentences. In the tagged data method, we equiva-
lently tag the bottom and top 30th percentiles as
simple/complex, and the remaining as neutral. We
experiment with multiple thresholds, and report
our results.

5 Technical Implementation

5.1 Datasets

We use three Spanish-English training sets:
the European Parliament Proceedings (Europarl)
(Koehn, 2005), OpenSubtitles2018 corpus (Lison
& Tiedemann, 2016), and Paracrawl!. Europarl
contains transcripts of European Parliamentary
proceedings, OpenSubtitles2018 is a corpus of
movie subtitles, and Paracrawl consists of aligned
data scraped from the web. We chose Spanish to
English translations for ease of qualitative assess-
ment and corpus size. There are ~2M Spanish-
English sentence pairs in Europarl, 61.4M pairs in
OpenSubtitles2018, and ~16M aligned sentences
in Paracrawl.

For corpus complexity experiments in Table
2 (hereafter, “baseline”), we use 2M randomly-
selected lines from OpenSubtitles2018 as the
OpenSubtitles training set. OS+Europarl consists
of the OpenSubtitles training corpus concatenated
with the full Europarl training set and shuffled, for

'nttps://paracrawl.eu/releases.html, ver-
sion 1

~4M lines of Spanish-English text. The Paracrawl
test set consists of 15 million randomly-selected
lines from the Paracrawl corpus.

The development set for the OpenSubtitles
baseline was 10K randomly-selected lines from
OpenSubtitles. For the OS+Europarl baseline, it
was the concatenation of newstest2012 (~3000
lines) and 10K randomly selected lines from
OpenSubtitles2018. Many more lines were cho-
sen from OpenSubtitles2018 than the newstest sets
for both dev and test because sentences in Open
Subtitles tend to be shorter than in newstest, and
we wanted to get a more representative sample of
our performance by including more sentences. For
the Europarl baseline, we used newstest2012, and
for Paracrawl, 3000 randomly-selected lines from
Paracrawl. Double decoder models were validated
by assessing the performance of each decoder on
the development set separately.

The test sets are newstest2013 (3000 lines),
a combined test set of newstest2013 + a differ-
ent 10K randomly-selected lines from OpenSubti-
tles2018, and different 3K randomly-selected lines
from Paracrawl.

5.2 Data Preprocessing

All data were punctuation-normalized and tok-
enized using the standard Moses scripts (Koehn
et al., 2007). Training data was then cleaned us-
ing Moses clean-corpus-n.perl using default pa-
rameters and a maximum sentence length of 100
words. All data were truecased and split into BPE
(Sennrich, Haddow, & Birch, 2015) tokens using
32000 merge operations. After BPE processing,
train and dev data were again cleaned with clean-
corpus-n.perl using default parameters and a max-
imum length of 100 BPE tokens.

To select ’simple” and “complex” data for the
two approaches, we obtained the Dale-Chall read-
ability score for each line in the training cor-
pus and the average readability score for the cor-
pus. We then selected percentile-based readabil-
ity thresholds below which sentences would be la-
beled “simple”, and above which they would be
labeled “complex”. We experimented with vari-
ous thresholds.

5.3 Encoder/Decoder Models

The basic model architecture is the default
RNN-based encoder-decoder model with attention
(Luong, Pham, & Manning, 2015) from Open-
NMT (Klein, Kim, Deng, Senellart, & Rush,



2017). The encoder and decoder are two-layer
LSTMs with hidden size = 500 and word embed-
ding size = 500. The models were trained with
stochastic gradient descent with the default learn-
ing rate of 1.0.

Each model was trained until performance on
the validation set ceased to improve. For test-
ing, we chose the model with lowest validation
perplexity. In the case of double-decoder mod-
els, lowest perplexity did not typically occur at the
same timestep for simple and complex decoders.
In that case, we chose a model that had good per-
formance on both validation sets.

5.4 Readability Scorers

Readability was scored using the textstat’ im-
plementations of the Dale-Chall (Chall & Dale,
1995) Flesch-Kincaid Readability Formula (Grade
Level) (Kincaid et al, 1975), and Flesch Reading
Ease (Flesch, 1948).

5.5 A Note about BLEU Score

Our goal is to have the output translation have
reasonably high BLEU score (Papineni, Roukos,
Ward, & Zhu, 2002) that aligns with translation
performance by the baseline. In this way, we
ensure that our system does not sacrifice much
semantic translation quality. Without evaluating
BLEU, one can envision how the “complex” sys-
tem might outperform the simple system when
evaluated only using readability tests by losing
all meaning of the sentence and simply outputting
complex words. This is not as trivial as with
BLEU score evaluation under typical NMT con-
ditions; We explicitly want translations to differ
under our “complex”/“simple” experimental set-
tings, but each sentence only has one gold transla-
tion. Thus, for instance, we would expect a Eu-
roparl source sentence evaluated as having high
complexity by the Flesch-Kincaid readability to
have some words modified when translated in the
“simple” setting, therefore BLEU score based on
matching ngram counts will suffer despite the
fact that our target measure (lower complexity)
may improve. We expect (and desire) a reduced
BLEU score in this setting that reflects complex
words being replaced by simpler ones. Even so,
BLEU should not decrease severely since we do
not expect our different experimental settings to

https://github.com/shivam5992/
textstat

completely rewrite sentences. Thus, we evaluate
BLEU to ensure that translation quality does not
suffer severely when adjusting output complexity.

6 Results

Results of the experiments corresponding to each
of the training and test sets are seen in the follow-
ing tables. Baseline refers to the scores of the test
set translation when translated with the baseline
single encoder-decoder model trained on the same
training set. We observe from Figure 2 that as the
constraints for categorizing a sentence as simple
or complex become more strict, the mean Dale-
Chall score for newstest2013 trained in simple ver-
sus complex settings widens. Observing BLEU
performance in Table 3, we see that BLEU does
suffer in response to the more extreme translation
changes brought about by increasingly divergent
simple and complex training sentences. As men-
tioned previously, decreased BLEU in this setting
may actually be a sign of improved performance
towards our goal of controlling readability. There-
fore to judge the quality of our translations, we
must inspect manually. Results for all other train-
ing/test set combinations on both architectures are
similar. Additional results are displayed in the ap-
pendix.

10 Train: ParaCrawl; Test: Newstest
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Figure 2: Results of double decoder and tagged
models trained on Paracrawl data, tested on new-
stest2013.

6.1 Qualitative Results

The qualitative examples below were produced
when translating newstest2013 using either of our
architectures trained on Paracrawl data. Baseline
translated sentence is italicised, the complex trans-



Anyway, let us suppose that it is Higgs, as

the chances of mistake seem few.

..., because it will end up being hurt.
..., because it will end up being damaged.

..., because it will end up getting hurt.

gold: ..., where he arrived the previous day.
..., which arrived on the previous day.
..., which came to the day before.

7 Attention Visualization

In Figure 3, we see a heatmap of attention when

DC FKG FRE BLEU
gold 8.11 9.49 59.83 -
baseline | 7.92 9.36 61.11 27.38

7.57 9.00 63.71 26.41

50-50 8.30 9.59 59.16 26.71
7.41 8.82 64.93 26.19

40-40 8.43 9.65 58.54 26.36
7.22 8.60 66.18 25.56

30-30 8.72 9.84 56.79 25.89
6.69 7.97 69.75 23.51

20-20 9.05 9.99 54.99 24.08
15.15 5.93 7.30 74.24 20.85
i 9.36 10.16 53.19 22.04
1313 4.68 6.43 80.02 18.52
9.44 10.16 52.71 21.28

the tagged data model was translating the same
sentence in simple versus complex mode. When

Table 3: Performance on newstest2013 of double-
decoder models trained on Paracrawl data.

lation is in the middle, and the simplified transla-
tion appears after.

6.1.1 Double Decoder - 15/15 Split

But my provocations are directed to start a

conversation.
But my provocations are directed to initiate

a conversation.
But my provocations are meant to start a

conversation.

Oh, that’s going to be very difficult to recog-

nize.
Oh, this will be extremely difficult to recog-

nize.
Oh, that’s going to be very hard to recog-
nize.

You will speak and show it at the same time.
You will discuss and display the same time.
You will speak and show it at the same time.

Not everyone feels happy with the fact that...
Not all are satisfied with the fact that...
Not everyone feels happy with the fact that.

6.1.2 Tagged Model - 40/40 split

It hurts the health of people.
Greatly impaired people’s health.
It hurts the health of people.

Anyway, we suppose that it is Higgs, as the

possibilities of mistake seem few.
Anyway, let us assume that it is Higgs, as the

possibilities of error seem to be few.

choosing the word “adversely” in complex mode
versus “negatively” in simple mode, we see at-
tention placed on the complexity indicator tags
“czxc” and “’szxc”. This suggests that the model
attended to the complexity tag when deciding
which word to use.

8 Analysis and Discussion

We deem the overall best model to be the dou-
ble decoder trained on Paracrawl with a 15/15
split of simple/complex data. This model trans-
lates newstest2013 to an overall Dale-Chall read-
ability score of 5.93 in simple mode and 9.36 in
complex mode, while retaining reasonable BLEU.
Given the baseline readability score of 7.92 and
the fact that the readability of the gold target
sentences is 8.11, we have demonstrated success
both raising and lowering the readability level of
the test set. The results on the Paracrawl and
OpenSubtitles2018+Europarl constructed test sets
given Paracrawl or OpenSubtitles+Europarl train-
ing data suggests that our methods are general
and applicable beyond the scope of the datasets
we chose. Our qualitative examples demonstrate
that though BLEU score depreciated, some of the
decrease reflects correct text changes towards our
goal of increasing or reducing text complexity.

We observed translations in “simple” mode
sometimes ending early or producing short sen-
tences (specifically, we observed Paracrawl 15-15
in the double decoder). Simple training sentences
may tend to be shorter than complex training sen-
tences, which may teach the simple decoder to
produce short sentences.

Regarding the difference between the double
decoder and tagged data models, we observe that
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Figure 3: Attention visualisation in simple vs. complex mode of tagged model (40/40 split, trained on

Paracrawl).

the double decoder is generally able to pull fur-
ther apart the mean readability of sentences trans-
lated in simple vs. complex mode. The separated
decoders may become more specialized towards
creating sentences of particular relative readabil-
ity levels, which may explain this observation.

We also observed the tagged model retaining
higher BLEU in general than the double decoder.
This could be related to the fact that the tagged
model does not pull apart the means of simple
and complex translations quite as far as the double
decoder. That said, we suspect this phenomenon
may be better explained by the fact that in the
tagged model, we retain sentences of an interme-
diate complexity level and still use them in trans-
lation, but with an ambiguous complexity tag (in
the double decoder model, we discard intermedi-
ate sentences). We suspect this extra data helped
maintain high BLEU. The higher BLEU score also
suggests that the tagged model may be preferable
in low-resource settings.

9 Related Work

Prior work in machine translation and natural lan-
guage processing primarily focus on readability
assessment and text simplification. For readabil-
ity assessment, a data-driven method is proposed
in (Le, Nguyen, & Wang, 2018) for assessing the
readability of document text, whereas (Ciobanu,
Dinu, & Pepelea, 2015) investigated the readabil-
ity of the MT system output with standard metrics.
(Jonmes et al., 2005) also investigated the readabil-
ity of MT and ASR systems output but with human

evaluation. As for text simplification, (Hardmeier,
Stymne, Tiedemann, & Nivre, 2013) proposes a
document-level decoder for SMT and mentioned a
case study that utilizes document-wide feature to
improve the readability of text. Similarly, global
features can be used for text simplification for
SMT (Stymne, Tiedemann, Hardmeier, & Nivre,
2013). Contrary to (Stymne et al., 2013), (Xu,
Napoles, Pavlick, Chen, & Callison-Burch, 2016)
designed a new training objective for SMT text
simplification.

Our work share similar grounds with these work
such that it involves controlling the readability of
machine translation output. Similar to [(Le et al.,
2018),(Ciobanu et al., 2015),(Jones et al., 2005),
we adopted evaluation metrics for assessing the
MT output. However, the readability constraint
is taken into account during training in our pro-
posed approaches. (Stymne et al., 2013) intro-
duces document-level feature such as type/token
ratios and lexical consistency as input to MT sys-
tem. On the other hand, our approaches at most
require an additional simplicity/complexity tag. In
addition, different from (Xu et al., 2016) in which
new training objective is proposed for text simpli-
fication, our NMT training objective remains the
same.

10 Conclusion

In this work, we developed two methods for gain-
ing control of the readability level of output trans-
lations in neural machine translation. Both of our
proposed models can significantly increase or de-



crease the readability levels of multiple test sets
when trained on different corpora, and have good
qualitative results. Notably, our tagged data model
can be deployed immediately on existing NMT
systems with no architectural changes.

11 Future Work

The bottom ~10% of Paracrawl data had very
low readability score, which we believe may have
severely negatively-impacted results as we made
stricter requirements for qualification as a ’sim-
ple” sentence to the double decoder. In the fu-
ture, we plan to experiment with cleaning the cor-
pus and discarding “junk” sentences from either
extreme of the readability spectrum before train-
ing. We suspect doing so will help us retain better
BLEU and have more accurate translations, rather
than learning from too much “junk” data. Addi-
tionally, we plan to experiment using the “inter-
mediary” sentences in the double decoder to see
if doing so retains BLEU as we observed in the
tagged model. We might split the intermediary
sentences into two groups and alternate training of
each decoder with these extra sentences. We sus-
pect this may pull the readability means of simple
vs. complex translations closer together, but pro-
duce better translations overall.

Finally, we observed exciting effects related to
formality which are outside the scope of this pa-
per. Particularly when training on Europarl and
OpenSubtitles2018 data, we often observed that
sentences trained in “complex” mode appeared
more formal than those trained in ’simple” mode;
most contractions were removed, and word se-
lection appeared more formal (in line what the
data we might expect to be produced during Eu-
ropean Parliamentary Proceedings). In the future,
we plan repeat these experiments with the goal of
increasing/decreasing formality of output transla-
tions, and have already observed promising first
results within these experiments.
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12 Appendix

DC | FKG | FRE | BLEU
gold | 4.49 | 3.89 | 83.00 -
baseline | 4.52 | 4.01 | 81.85 | 27.30
4.03 | 352 | 85.34 | 26.70
50-50 6.35 | 5.00 | 74.41 | 24.19
3.90 | 3.46 | 85.75 | 26.56
40-40 6.60 | 5.18 | 72.90 | 23.45
3.70 | 3.30 | 86.86 | 26.28
30-30 7.59 | 5.75 | 68.57 | 22.16

Table 4: Performance on combined test set of
double-decoder models trained on Paracrawl data.

DC FKG FRE | BLEU
gold 8.01 9.77 56.06 -

baseline | 7.83 9.57 56.56 | 31.68
7.41 9.08 60.21 | 30.77

50-50 8.26 9.98 53.77 | 30.53
7.19 8.86 61.69 | 29.95

40-40 8.43 9.96 53.68 | 29.63
6.88 8.94 60.48 | 28.58

30-30 8.73 10.24 | 51.32 | 28.50

Table 5: Performance on the Paracrawl test set of
double-decoder models trained on Paracrawl data.

DC | FKG | FRE | BLEU
gold | 449 | 3.89 | 83.00 -
baseline | 4.20 | 3.77 | 83.63 | 29.00

3.63 | 3.26 | 86.95 | 27.34

50-50 6.23 | 495 | 74.84 | 26.07

3.09 | 290 | 89.22 | 25.41

40-40 6.73 | 522 | 72.62 | 24.41

1.02 | 092 | 98.47 | 15.35

30-30 7.58 | 5.78 | 68.19 | 22.26
Table 6: Performance on combined test set

of double-decoder models trained on Eu-

roParl+OpenSubtitles2018 data.



DC | FKG | FRE | BLEU
gold 8.11 949 | 59.83 -
baseline | 7.61 9.15 | 63.40 | 24.79
6.76 | 8.09 | 69.51 22.29
50-50 8.06 | 9.51 | 60.65 | 24.57
592 | 7.24 | 74.20 19.21
40-40 828 | 9.66 | 59.47 | 23.95
1.59 1.58 | 98.00 3.95
30-30 8.65 993 | 57.17 | 23.30
Table 7: Performance on newstest2013

of double-decoder

models

trained on Eu-

roParl+OpenSubtitles2018 data.

DC | FKG | FRE | BLEU
gold | 801 | 9.77 | 56.06 -
baseline | 7.32 9.20 61.59 22.80

634 | 773 | 6939 | 18.95

50-50 786 | 9.62 | 58.51 | 22.37

533 | 684 | 73.92 | 15.25

40-40 798 | 9.89 | 57.26 | 22.59

1.14 | 1.10 | 9936 | 2.32

30-30 8.39 | 10.08 | 55.04 | 21.61
Table 8: Performance on Paracrawl test set

of double-decoder

models

trained on Eu-

roParl+OpenSubtitles2018 data.

DC FKG FRE | BLEU
gold 4487 | 3.888 | 83.002 -

baseline | 4.523 | 4.006 | 81.847 | 27.30
50-50 4.203 | 3.759 | 83.677 | 2745
6.032 | 4.885 | 75315 | 2597

40-40 4.059 | 3.661 | 84.466 | 27.43
6.435 | 5.068 | 73.882 | 25.38

30-30 3994 | 3.565 | 85.183 | 27.49
6.936 | 5.265 | 72.372 | 24.71

Table 9: Performance on combined test set for

tagged model trained on ParaCrawl.

DC FKG FRE | BLEU

gold 8.009 | 9.774 | 56.060 -
baseline | 7.826 | 9.572 | 56.558 | 31.68
50-50 7.539 | 9.390 | 58.329 | 31.84
8.173 | 9.855 | 54.677 | 31.66
40-40 7.412 | 9.121 | 60.303 | 31.92
8.280 | 9.830 | 54.772 | 31.69
30-30 7.309 | 9.158 | 60.145 | 31.71
8.486 | 9.970 | 53.667 | 31.51

Table 10: Performance on ParaCrawl
tagged model trained on ParaCrawl.

test set for

DC FKG FRE | BLEU
gold 8.105 | 9.491 | 59.825 -
baseline | 7.924 | 9.356 | 61.115 | 27.38
50-50 7717 | 9.149 | 62.865 | 27.32

8.210 | 9.530 | 59.718 | 27.27
40-40 7.574 | 9.052 | 63.759 | 27.09
8.417 | 9.697 | 58.414 | 27.24
30-30 7.451 | 8977 | 64.406 | 27.14
8.582 | 9.790 | 57.566 | 27.09

Table 11: Performance on newstest2013 for

tagged model trained on ParaCrawl.

DC FKG FRE | BLEU

gold 4487 | 3.888 | 83.002 -
baseline | 4.198 | 3.766 | 83.631 | 29.00
50-50 3.828 | 3.519 | 85.541 | 29.10
5708 | 4.624 | 77.323 | 27.93
40-40 3.555 | 3.355 | 86.668 | 28.33
6.867 | 5.247 | 72.647 | 26.34
30-30 3.199 | 3.023 | 88.246 | 27.13
6.476 | 5.007 | 74.149 | 26.69

Table 12: Performance on combined

test set for tagged model trained on Eu-
roparl+OpenSubtitles2018.



DC FKG FRE | BLEU
gold 8.009 | 9.774 | 56.060 -

baseline | 7.321 | 9.201 | 61.592 | 22.80

6.816 | 8.840 | 64.595 | 22.61

50-50 7.758 | 9.588 | 59.159 | 23.18
40-40 6.421 | 8335 | 67.609 | 21.84
7.929 | 9.686 | 58.142 | 23.08
30-30 5.814 | 7.223 | 71.665 | 19.01
8.064 | 9.592 | 57.830 | 22.32

Table 13: Performance on  Paracrawl

test set for tagged model trained on Eu-
roparl+OpenSubtitles2018.

DC FKG FRE | BLEU
gold 8.105 | 9.491 | 59.825 -

baseline | 7.614 | 9.151 | 63.399 | 24.79

7.215 | 8.890 | 65.653 | 24.77

3050 1 7067 | 9433 | 61415 | 24.99
40-40 6.819 | 8.486 | 68.314 | 24.03
8.311 | 9.655 | 59.520 | 24.73
30-30 6.190 | 7.647 | 71990 | 22.63
8.298 | 9.566 | 59.721 | 24.69

Table 14: Performance on newstest2013

for tagged ~model trained on  Eu-
roparl+OpenSubtitles2018.



